Mega Code Archive

 
Categories / C# / Security
 

Provides the Unix crypt() encryption algorithm

// <copyright file="UnixCrypt.cs" company="Cédric Belin"> //    This sourcecode is a port from Java to C#. //    The original (Java) version was made by John Dumas and can be found at: http://www.dynamic.net.au/christos/crypt/UnixCrypt.txt // </copyright> // <summary> //   Implémentation de la classe <c>DigiWar.Security.Cryptography.UnixCrypt</c>. // </summary> // <author>$Author: cedx $</author> // <date>$Date: 2009-09-10 19:44:34 +0200 (jeu. 10 sept. 2009) $</date> // <version>$Revision: 1827 $</version>   using System;   using System.Linq;   using System.Text;   ////       /// <summary>   /// Provides the Unix crypt() encryption algorithm.   /// </summary>   /// <remarks>   /// This class is a port from Java source. I do not understand the underlying algorithms, I just converted it to C# and it works.   /// Because I do not understand the underlying algorithms I cannot give most of the variables useful names. I have no clue what their   /// significance is. I tried to give the variable names as much meaning as possible, but the original source just called them a, b, c , etc...   ///    /// A very important thing to note is that all ints in this code are UNSIGNED ints! Do not change this, ever!!! It will seriously fuckup the working   /// of this class. It uses major bitshifting and while Java gives you the >>> operator to signify a right bitshift WITHOUT setting the MSB for   /// a signed int, C# does not have this operator and will just set the new MSB for you if it happened to be set the moment you bitshifted it.   /// This is undesirable for most bitshifts and in the cases it did matter, I casted the variable back to an int. This was only required where   /// a variable was on the right-side of a bitshift operator.   /// </remarks>    internal static class UnixCrypt    {       /// <value>       /// The list with characters allowed in a Unix encrypted password.       /// It is used to randomly chose two characters for use in the encryption.       /// </value>       private const string m_encryptionSaltCharacters = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789./";       /// <value>       /// A lookup-table, presumably filled with some sort of encryption key.        /// It is used to calculate the index to the m_SPTranslationTable lookup-table.       /// </value>       private static readonly uint[] m_saltTranslation =                            {                               0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,                                0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,                                0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,                                0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,                                0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,                                0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,                                0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09,                                0x0A, 0x0B, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A,                                0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12,                                0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A,                                0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22,                                0x23, 0x24, 0x25, 0x20, 0x21, 0x22, 0x23, 0x24,                                0x25, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C,                                0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34,                                0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C,                                0x3D, 0x3E, 0x3F, 0x00, 0x00, 0x00, 0x00, 0x00,        };       /// <value>       /// A lookup-table.       /// It is used to calculate the index to the m_skb lookup-table.       /// </value>       private static readonly bool[] m_shifts =                            {                               false, false, true, true, true, true, true, true,                               false, true,  true, true, true, true, true, false                            };       /// <value>       /// A lookup-table.       /// It is used the dynamically create the schedule lookup-table.       /// </value>       private static readonly uint[,] m_skb =                            {                               {                                  /* for C bits (numbered as per FIPS 46) 1 2 3 4 5 6 */                                  0x00000000, 0x00000010, 0x20000000, 0x20000010,                                   0x00010000, 0x00010010, 0x20010000, 0x20010010,                                   0x00000800, 0x00000810, 0x20000800, 0x20000810,                                   0x00010800, 0x00010810, 0x20010800, 0x20010810,                                   0x00000020, 0x00000030, 0x20000020, 0x20000030,                                   0x00010020, 0x00010030, 0x20010020, 0x20010030,                                   0x00000820, 0x00000830, 0x20000820, 0x20000830,                                   0x00010820, 0x00010830, 0x20010820, 0x20010830,                                   0x00080000, 0x00080010, 0x20080000, 0x20080010,                                   0x00090000, 0x00090010, 0x20090000, 0x20090010,                                   0x00080800, 0x00080810, 0x20080800, 0x20080810,                                   0x00090800, 0x00090810, 0x20090800, 0x20090810,                                   0x00080020, 0x00080030, 0x20080020, 0x20080030,                                   0x00090020, 0x00090030, 0x20090020, 0x20090030,                                   0x00080820, 0x00080830, 0x20080820, 0x20080830,                                   0x00090820, 0x00090830, 0x20090820, 0x20090830,                             },                               {                                  /* for C bits (numbered as per FIPS 46) 7 8 10 11 12 13 */                                  0x00000000, 0x02000000, 0x00002000, 0x02002000,                                   0x00200000, 0x02200000, 0x00202000, 0x02202000,                                   0x00000004, 0x02000004, 0x00002004, 0x02002004,                                   0x00200004, 0x02200004, 0x00202004, 0x02202004,                                   0x00000400, 0x02000400, 0x00002400, 0x02002400,                                   0x00200400, 0x02200400, 0x00202400, 0x02202400,                                   0x00000404, 0x02000404, 0x00002404, 0x02002404,                                   0x00200404, 0x02200404, 0x00202404, 0x02202404,                                   0x10000000, 0x12000000, 0x10002000, 0x12002000,                                   0x10200000, 0x12200000, 0x10202000, 0x12202000,                                   0x10000004, 0x12000004, 0x10002004, 0x12002004,                                   0x10200004, 0x12200004, 0x10202004, 0x12202004,                                   0x10000400, 0x12000400, 0x10002400, 0x12002400,                                   0x10200400, 0x12200400, 0x10202400, 0x12202400,                                   0x10000404, 0x12000404, 0x10002404, 0x12002404,                                   0x10200404, 0x12200404, 0x10202404, 0x12202404,                             },                               {                                  /* for C bits (numbered as per FIPS 46) 14 15 16 17 19 20 */                                  0x00000000, 0x00000001, 0x00040000, 0x00040001,                                   0x01000000, 0x01000001, 0x01040000, 0x01040001,                                   0x00000002, 0x00000003, 0x00040002, 0x00040003,                                   0x01000002, 0x01000003, 0x01040002, 0x01040003,                                   0x00000200, 0x00000201, 0x00040200, 0x00040201,                                   0x01000200, 0x01000201, 0x01040200, 0x01040201,                                   0x00000202, 0x00000203, 0x00040202, 0x00040203,                                   0x01000202, 0x01000203, 0x01040202, 0x01040203,                                   0x08000000, 0x08000001, 0x08040000, 0x08040001,                                   0x09000000, 0x09000001, 0x09040000, 0x09040001,                                   0x08000002, 0x08000003, 0x08040002, 0x08040003,                                   0x09000002, 0x09000003, 0x09040002, 0x09040003,                                   0x08000200, 0x08000201, 0x08040200, 0x08040201,                                   0x09000200, 0x09000201, 0x09040200, 0x09040201,                                   0x08000202, 0x08000203, 0x08040202, 0x08040203,                                   0x09000202, 0x09000203, 0x09040202, 0x09040203,                             },                               {                                  /* for C bits (numbered as per FIPS 46) 21 23 24 26 27 28 */                                  0x00000000, 0x00100000, 0x00000100, 0x00100100,                                   0x00000008, 0x00100008, 0x00000108, 0x00100108,                                   0x00001000, 0x00101000, 0x00001100, 0x00101100,                                   0x00001008, 0x00101008, 0x00001108, 0x00101108,                                   0x04000000, 0x04100000, 0x04000100, 0x04100100,                                   0x04000008, 0x04100008, 0x04000108, 0x04100108,                                   0x04001000, 0x04101000, 0x04001100, 0x04101100,                                   0x04001008, 0x04101008, 0x04001108, 0x04101108,                                   0x00020000, 0x00120000, 0x00020100, 0x00120100,                                   0x00020008, 0x00120008, 0x00020108, 0x00120108,                                   0x00021000, 0x00121000, 0x00021100, 0x00121100,                                   0x00021008, 0x00121008, 0x00021108, 0x00121108,                                   0x04020000, 0x04120000, 0x04020100, 0x04120100,                                   0x04020008, 0x04120008, 0x04020108, 0x04120108,                                   0x04021000, 0x04121000, 0x04021100, 0x04121100,                                   0x04021008, 0x04121008, 0x04021108, 0x04121108,                             },                               {                                  /* for D bits (numbered as per FIPS 46) 1 2 3 4 5 6 */                                  0x00000000, 0x10000000, 0x00010000, 0x10010000,                                   0x00000004, 0x10000004, 0x00010004, 0x10010004,                                   0x20000000, 0x30000000, 0x20010000, 0x30010000,                                   0x20000004, 0x30000004, 0x20010004, 0x30010004,                                   0x00100000, 0x10100000, 0x00110000, 0x10110000,                                   0x00100004, 0x10100004, 0x00110004, 0x10110004,                                   0x20100000, 0x30100000, 0x20110000, 0x30110000,                                   0x20100004, 0x30100004, 0x20110004, 0x30110004,                                   0x00001000, 0x10001000, 0x00011000, 0x10011000,                                   0x00001004, 0x10001004, 0x00011004, 0x10011004,                                   0x20001000, 0x30001000, 0x20011000, 0x30011000,                                   0x20001004, 0x30001004, 0x20011004, 0x30011004,                                   0x00101000, 0x10101000, 0x00111000, 0x10111000,                                   0x00101004, 0x10101004, 0x00111004, 0x10111004,                                   0x20101000, 0x30101000, 0x20111000, 0x30111000,                                   0x20101004, 0x30101004, 0x20111004, 0x30111004,                             },                               {                                  /* for D bits (numbered as per FIPS 46) 8 9 11 12 13 14 */                                  0x00000000, 0x08000000, 0x00000008, 0x08000008,                                   0x00000400, 0x08000400, 0x00000408, 0x08000408,                                   0x00020000, 0x08020000, 0x00020008, 0x08020008,                                   0x00020400, 0x08020400, 0x00020408, 0x08020408,                                   0x00000001, 0x08000001, 0x00000009, 0x08000009,                                   0x00000401, 0x08000401, 0x00000409, 0x08000409,                                   0x00020001, 0x08020001, 0x00020009, 0x08020009,                                   0x00020401, 0x08020401, 0x00020409, 0x08020409,                                   0x02000000, 0x0A000000, 0x02000008, 0x0A000008,                                   0x02000400, 0x0A000400, 0x02000408, 0x0A000408,                                   0x02020000, 0x0A020000, 0x02020008, 0x0A020008,                                   0x02020400, 0x0A020400, 0x02020408, 0x0A020408,                                   0x02000001, 0x0A000001, 0x02000009, 0x0A000009,                                   0x02000401, 0x0A000401, 0x02000409, 0x0A000409,                                   0x02020001, 0x0A020001, 0x02020009, 0x0A020009,                                   0x02020401, 0x0A020401, 0x02020409, 0x0A020409,                             },                               {                                  /* for D bits (numbered as per FIPS 46) 16 17 18 19 20 21 */                                  0x00000000, 0x00000100, 0x00080000, 0x00080100,                                   0x01000000, 0x01000100, 0x01080000, 0x01080100,                                   0x00000010, 0x00000110, 0x00080010, 0x00080110,                                   0x01000010, 0x01000110, 0x01080010, 0x01080110,                                   0x00200000, 0x00200100, 0x00280000, 0x00280100,                                   0x01200000, 0x01200100, 0x01280000, 0x01280100,                                   0x00200010, 0x00200110, 0x00280010, 0x00280110,                                   0x01200010, 0x01200110, 0x01280010, 0x01280110,                                   0x00000200, 0x00000300, 0x00080200, 0x00080300,                                   0x01000200, 0x01000300, 0x01080200, 0x01080300,                                   0x00000210, 0x00000310, 0x00080210, 0x00080310,                                   0x01000210, 0x01000310, 0x01080210, 0x01080310,                                   0x00200200, 0x00200300, 0x00280200, 0x00280300,                                   0x01200200, 0x01200300, 0x01280200, 0x01280300,                                   0x00200210, 0x00200310, 0x00280210, 0x00280310,                                   0x01200210, 0x01200310, 0x01280210, 0x01280310,                             },                               {                                  /* for D bits (numbered as per FIPS 46) 22 23 24 25 27 28 */                                  0x00000000, 0x04000000, 0x00040000, 0x04040000,                                   0x00000002, 0x04000002, 0x00040002, 0x04040002,                                   0x00002000, 0x04002000, 0x00042000, 0x04042000,                                   0x00002002, 0x04002002, 0x00042002, 0x04042002,                                   0x00000020, 0x04000020, 0x00040020, 0x04040020,                                   0x00000022, 0x04000022, 0x00040022, 0x04040022,                                   0x00002020, 0x04002020, 0x00042020, 0x04042020,                                   0x00002022, 0x04002022, 0x00042022, 0x04042022,                                   0x00000800, 0x04000800, 0x00040800, 0x04040800,                                   0x00000802, 0x04000802, 0x00040802, 0x04040802,                                   0x00002800, 0x04002800, 0x00042800, 0x04042800,                                   0x00002802, 0x04002802, 0x00042802, 0x04042802,                                   0x00000820, 0x04000820, 0x00040820, 0x04040820,                                   0x00000822, 0x04000822, 0x00040822, 0x04040822,                                   0x00002820, 0x04002820, 0x00042820, 0x04042820,                                   0x00002822, 0x04002822, 0x00042822, 0x04042822,                             }       };       /// <value>       /// A lookup-table.       /// It is used to calculate two ints that are used to encrypt the password.       /// </value>       private static readonly uint[,] m_SPTranslationTable =                            {                               {                                  /* nibble 0 */                                  0x00820200, 0x00020000, 0x80800000, 0x80820200,                                  0x00800000, 0x80020200, 0x80020000, 0x80800000,                                  0x80020200, 0x00820200, 0x00820000, 0x80000200,                                  0x80800200, 0x00800000, 0x00000000, 0x80020000,                                  0x00020000, 0x80000000, 0x00800200, 0x00020200,                                  0x80820200, 0x00820000, 0x80000200, 0x00800200,                                  0x80000000, 0x00000200, 0x00020200, 0x80820000,                                  0x00000200, 0x80800200, 0x80820000, 0x00000000,                                  0x00000000, 0x80820200, 0x00800200, 0x80020000,                                  0x00820200, 0x00020000, 0x80000200, 0x00800200,                                  0x80820000, 0x00000200, 0x00020200, 0x80800000,                                  0x80020200, 0x80000000, 0x80800000, 0x00820000,                                  0x80820200, 0x00020200, 0x00820000, 0x80800200,                                  0x00800000, 0x80000200, 0x80020000, 0x00000000,                                  0x00020000, 0x00800000, 0x80800200, 0x00820200,                                  0x80000000, 0x80820000, 0x00000200, 0x80020200,                               },                               {                                  /* nibble 1 */                                  0x10042004, 0x00000000, 0x00042000, 0x10040000,                                  0x10000004, 0x00002004, 0x10002000, 0x00042000,                                  0x00002000, 0x10040004, 0x00000004, 0x10002000,                                  0x00040004, 0x10042000, 0x10040000, 0x00000004,                                  0x00040000, 0x10002004, 0x10040004, 0x00002000,                                  0x00042004, 0x10000000, 0x00000000, 0x00040004,                                  0x10002004, 0x00042004, 0x10042000, 0x10000004,                                  0x10000000, 0x00040000, 0x00002004, 0x10042004,                                  0x00040004, 0x10042000, 0x10002000, 0x00042004,                                  0x10042004, 0x00040004, 0x10000004, 0x00000000,                                  0x10000000, 0x00002004, 0x00040000, 0x10040004,                                  0x00002000, 0x10000000, 0x00042004, 0x10002004,                                  0x10042000, 0x00002000, 0x00000000, 0x10000004,                                  0x00000004, 0x10042004, 0x00042000, 0x10040000,                                  0x10040004, 0x00040000, 0x00002004, 0x10002000,                                  0x10002004, 0x00000004, 0x10040000, 0x00042000,                               },                               {                                  /* nibble 2 */                                  0x41000000, 0x01010040, 0x00000040, 0x41000040,                                  0x40010000, 0x01000000, 0x41000040, 0x00010040,                                  0x01000040, 0x00010000, 0x01010000, 0x40000000,                                  0x41010040, 0x40000040, 0x40000000, 0x41010000,                                  0x00000000, 0x40010000, 0x01010040, 0x00000040,                                  0x40000040, 0x41010040, 0x00010000, 0x41000000,                                  0x41010000, 0x01000040, 0x40010040, 0x01010000,                                  0x00010040, 0x00000000, 0x01000000, 0x40010040,                                  0x01010040, 0x00000040, 0x40000000, 0x00010000,                                  0x40000040, 0x40010000, 0x01010000, 0x41000040,                                  0x00000000, 0x01010040, 0x00010040, 0x41010000,                                  0x40010000, 0x01000000, 0x41010040, 0x40000000,                                  0x40010040, 0x41000000, 0x01000000, 0x41010040,                                  0x00010000, 0x01000040, 0x41000040, 0x00010040,                                  0x01000040, 0x00000000, 0x41010000, 0x40000040,                                  0x41000000, 0x40010040, 0x00000040, 0x01010000,                               },                               {                                  /* nibble 3 */                                  0x00100402, 0x04000400, 0x00000002, 0x04100402,                                  0x00000000, 0x04100000, 0x04000402, 0x00100002,                                  0x04100400, 0x04000002, 0x04000000, 0x00000402,                                  0x04000002, 0x00100402, 0x00100000, 0x04000000,                                  0x04100002, 0x00100400, 0x00000400, 0x00000002,                                  0x00100400, 0x04000402, 0x04100000, 0x00000400,                                  0x00000402, 0x00000000, 0x00100002, 0x04100400,                                  0x04000400, 0x04100002, 0x04100402, 0x00100000,                                  0x04100002, 0x00000402, 0x00100000, 0x04000002,                                  0x00100400, 0x04000400, 0x00000002, 0x04100000,                                  0x04000402, 0x00000000, 0x00000400, 0x00100002,                                  0x00000000, 0x04100002, 0x04100400, 0x00000400,                                  0x04000000, 0x04100402, 0x00100402, 0x00100000,                                  0x04100402, 0x00000002, 0x04000400, 0x00100402,                                  0x00100002, 0x00100400, 0x04100000, 0x04000402,                                  0x00000402, 0x04000000, 0x04000002, 0x04100400,                               },                               {                                  /* nibble 4 */                                  0x02000000, 0x00004000, 0x00000100, 0x02004108,                                  0x02004008, 0x02000100, 0x00004108, 0x02004000,                                  0x00004000, 0x00000008, 0x02000008, 0x00004100,                                  0x02000108, 0x02004008, 0x02004100, 0x00000000,                                  0x00004100, 0x02000000, 0x00004008, 0x00000108,                                  0x02000100, 0x00004108, 0x00000000, 0x02000008,                                  0x00000008, 0x02000108, 0x02004108, 0x00004008,                                  0x02004000, 0x00000100, 0x00000108, 0x02004100,                                  0x02004100, 0x02000108, 0x00004008, 0x02004000,                                  0x00004000, 0x00000008, 0x02000008, 0x02000100,                                  0x02000000, 0x00004100, 0x02004108, 0x00000000,                                  0x00004108, 0x02000000, 0x00000100, 0x00004008,                                  0x02000108, 0x00000100, 0x00000000, 0x02004108,                                  0x02004008, 0x02004100, 0x00000108, 0x00004000,                                  0x00004100, 0x02004008, 0x02000100, 0x00000108,                                  0x00000008, 0x00004108, 0x02004000, 0x02000008,                               },                               {                                  /* nibble 5 */                                  0x20000010, 0x00080010, 0x00000000, 0x20080800,                                  0x00080010, 0x00000800, 0x20000810, 0x00080000,                                  0x00000810, 0x20080810, 0x00080800, 0x20000000,                                  0x20000800, 0x20000010, 0x20080000, 0x00080810,                                  0x00080000, 0x20000810, 0x20080010, 0x00000000,                                  0x00000800, 0x00000010, 0x20080800, 0x20080010,                                  0x20080810, 0x20080000, 0x20000000, 0x00000810,                                  0x00000010, 0x00080800, 0x00080810, 0x20000800,                                  0x00000810, 0x20000000, 0x20000800, 0x00080810,                                  0x20080800, 0x00080010, 0x00000000, 0x20000800,                                  0x20000000, 0x00000800, 0x20080010, 0x00080000,                                  0x00080010, 0x20080810, 0x00080800, 0x00000010,                                  0x20080810, 0x00080800, 0x00080000, 0x20000810,                                  0x20000010, 0x20080000, 0x00080810, 0x00000000,                                  0x00000800, 0x20000010, 0x20000810, 0x20080800,                                  0x20080000, 0x00000810, 0x00000010, 0x20080010,                               },                               {                                  /* nibble 6 */                                  0x00001000, 0x00000080, 0x00400080, 0x00400001,                                  0x00401081, 0x00001001, 0x00001080, 0x00000000,                                  0x00400000, 0x00400081, 0x00000081, 0x00401000,                                  0x00000001, 0x00401080, 0x00401000, 0x00000081,                                  0x00400081, 0x00001000, 0x00001001, 0x00401081,                                  0x00000000, 0x00400080, 0x00400001, 0x00001080,                                  0x00401001, 0x00001081, 0x00401080, 0x00000001,                                  0x00001081, 0x00401001, 0x00000080, 0x00400000,                                  0x00001081, 0x00401000, 0x00401001, 0x00000081,                                  0x00001000, 0x00000080, 0x00400000, 0x00401001,                                  0x00400081, 0x00001081, 0x00001080, 0x00000000,                                  0x00000080, 0x00400001, 0x00000001, 0x00400080,                                  0x00000000, 0x00400081, 0x00400080, 0x00001080,                                  0x00000081, 0x00001000, 0x00401081, 0x00400000,                                  0x00401080, 0x00000001, 0x00001001, 0x00401081,                                  0x00400001, 0x00401080, 0x00401000, 0x00001001,                               },                               {                                  /* nibble 7 */                                  0x08200020, 0x08208000, 0x00008020, 0x00000000,                                  0x08008000, 0x00200020, 0x08200000, 0x08208020,                                  0x00000020, 0x08000000, 0x00208000, 0x00008020,                                  0x00208020, 0x08008020, 0x08000020, 0x08200000,                                  0x00008000, 0x00208020, 0x00200020, 0x08008000,                                  0x08208020, 0x08000020, 0x00000000, 0x00208000,                                  0x08000000, 0x00200000, 0x08008020, 0x08200020,                                  0x00200000, 0x00008000, 0x08208000, 0x00000020,                                  0x00200000, 0x00008000, 0x08000020, 0x08208020,                                  0x00008020, 0x08000000, 0x00000000, 0x00208000,                                  0x08200020, 0x08008020, 0x08008000, 0x00200020,                                  0x08208000, 0x00000020, 0x00200020, 0x08008000,                                  0x08208020, 0x00200000, 0x08200000, 0x08000020,                                  0x00208000, 0x00008020, 0x08008020, 0x08200000,                                  0x00000020, 0x08208000, 0x00208020, 0x00000000,                                  0x08000000, 0x08200020, 0x00008000, 0x00208020                               }                            };       /// <value>       /// A lookup-table filled with printable characters.       /// It is used to make sure the encrypted password contains only printable characters. It is filled with       /// ASCII characters 46 - 122 (from the dot (.) untill (including) the lowercase 'z').       /// </value>       private static readonly uint[] m_characterConversionTable =                            {                               0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35,                                0x36, 0x37, 0x38, 0x39, 0x41, 0x42, 0x43, 0x44,                                0x45, 0x46, 0x47, 0x48, 0x49, 0x4A, 0x4B, 0x4C,                                0x4D, 0x4E, 0x4F, 0x50, 0x51, 0x52, 0x53, 0x54,                                0x55, 0x56, 0x57, 0x58, 0x59, 0x5A, 0x61, 0x62,                                0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6A,                                0x6B, 0x6C, 0x6D, 0x6E, 0x6F, 0x70, 0x71, 0x72,                                0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7A                            };       /// <value>       /// Marks the size of the dynamically created schedule lookup-table.       /// </value>       private const int m_desIterations = 16;       /// <summary>       /// Converts four seperate bytes into one uint.       /// </summary>       /// <param name="inputBytes">The bytes to use for the conversion.</param>       /// <param name="offset">The offset at which to start in the inputBytes buffer.</param>       /// <returns></returns>       private static uint FourBytesToInt(byte[] inputBytes, uint offset)       {          // I used an int here because the compiler would complain the stuff below would require a cast from int to uint.          // To keep the code cleaner I opted to use an int and cast it when I returned it.          int resultValue = 0;          resultValue = (inputBytes[offset++] & 0xFF);          resultValue |= (inputBytes[offset++] & 0xFF) << 8;          resultValue |= (inputBytes[offset++] & 0xFF) << 16;          resultValue |= (inputBytes[offset++]& 0xFF) << 24;          return (uint)resultValue;       }       /// <summary>       /// Converts an uint into 4 seperate bytes.       /// </summary>       /// <param name="inputInt">The uint to convert.</param>       /// <param name="outputBytes">The byte buffer into which to store the result.</param>       /// <param name="offset">The offset to start storing at in the outputBytes buffer.</param>       private static void IntToFourBytes(uint inputInt, byte[] outputBytes, uint offset)       {          outputBytes[offset++] = (byte)(inputInt & 0xFF);          outputBytes[offset++] = (byte)((inputInt >> 8) & 0xFF);          outputBytes[offset++] = (byte)((inputInt >> 16) & 0xFF);          outputBytes[offset++] = (byte)((inputInt >> 24) & 0xFF);       }       /// <summary>       /// Performs some operation on 4 uints. It's labeled PERM_OP in the original source.       /// </summary>       /// <param name="firstInt">The first uint to use.</param>       /// <param name="secondInt">The second uint to use.</param>       /// <param name="thirdInt">The third uint to use.</param>       /// <param name="fourthInt">The fourth uint to use.</param>       /// <param name="operationResults">An array of 2 uints that are the result of this operation.</param>       private static void PermOperation(uint firstInt, uint secondInt, uint thirdInt, uint fourthInt, uint[] operationResults)       {          // Because here an uint variable is at the right side of a bitshift, I needed to cast it to int. See the remarks of the class itself          // for more details.          uint tempInt = ((firstInt >> (int)thirdInt) ^ secondInt) & fourthInt;          firstInt ^= tempInt << (int)thirdInt;          secondInt ^= tempInt;          operationResults[0] = firstInt;          operationResults[1] = secondInt;       }       /// <summary>       /// Performs some operation on 3 uints. It's labeled HPERM_OP in the original source.       /// </summary>       /// <param name="firstInt">The first uint to use.</param>       /// <param name="secondInt">The second int to use.</param>       /// <param name="thirdInt">The third uint to use.</param>       /// <returns>An int that is the result of this operation.</returns>       private static uint HPermOperation(uint firstInt, int secondInt, uint thirdInt)       {          // The variable secondInt is always used to calculate the number at the right side of a          // bitshift. It is not used anywhere else, so I made the method parameter an int, to avoid          // unnecessary casting.          uint tempInt = ((firstInt << (16 - secondInt)) ^ firstInt) & thirdInt;          uint returnInt = firstInt ^ tempInt ^ (tempInt >> (16 - secondInt));          return returnInt;       }       /// <summary>       /// This method does some very complex bit manipulations.       /// </summary>       /// <param name="encryptionKey">The input data to use for the bit manipulations.</param>       /// <returns>m_desIterations * 2 number of uints that are the result of the manipulations.</returns>       private static uint[] SetDESKey(byte[] encryptionKey)       {          uint[] schedule = new uint[m_desIterations * 2];          uint firstInt = FourBytesToInt(encryptionKey, 0);          uint secondInt = FourBytesToInt(encryptionKey, 4);          uint[] operationResults = new uint[2];          PermOperation(secondInt, firstInt, 4, 0x0F0F0F0F, operationResults);          secondInt = operationResults[0];          firstInt = operationResults[1];          firstInt = HPermOperation(firstInt, -2, 0xCCCC0000);          secondInt = HPermOperation(secondInt, -2, 0xCCCC0000);          PermOperation(secondInt, firstInt, 1, 0x55555555, operationResults);          secondInt = operationResults[0];          firstInt = operationResults[1];          PermOperation(firstInt, secondInt, 8, 0x00FF00FF, operationResults);          firstInt = operationResults[0];          secondInt = operationResults[1];          PermOperation(secondInt, firstInt, 1, 0x55555555, operationResults);          secondInt = operationResults[0];          firstInt = operationResults[1];          secondInt = (((secondInt & 0xFF) << 16) | (secondInt & 0xFF00) |             ((secondInt & 0xFF0000) >> 16) | ((firstInt & 0xF0000000) >> 4));          firstInt &= 0x0FFFFFFF;          bool needToShift;          uint firstSkbValue, secondSkbValue;          uint scheduleIndex = 0;          for(int index = 0; index < m_desIterations; index++)          {             needToShift = m_shifts[index];             if(needToShift)             {                firstInt = (firstInt >> 2) | (firstInt << 26);                secondInt = (secondInt >> 2) | (secondInt << 26);             }             else             {                firstInt = (firstInt >> 1) | (firstInt << 27);                secondInt = (secondInt >> 1) | (secondInt << 27);             }             firstInt &= 0x0FFFFFFF;             secondInt &= 0xFFFFFFF;             firstSkbValue = m_skb[0, firstInt & 0x3F] |                m_skb[1, ((firstInt >> 6) & 0x03) | ((firstInt >> 7) & 0x3C)] |                m_skb[2, ((firstInt >> 13) & 0x0F) | ((firstInt >> 14) & 0x30)] |                m_skb[3, ((firstInt >> 20) & 0x01) | ((firstInt >> 21) & 0x06) | ((firstInt >> 22) & 0x38)];             secondSkbValue = m_skb[4, secondInt & 0x3F] |                m_skb[5, ((secondInt >> 7) & 0x03) | ((secondInt >> 8) & 0x3C)] |                m_skb[6, (secondInt >> 15) & 0x3F] |                m_skb[7, ((secondInt >> 21) & 0x0F) | ((secondInt >> 22) & 0x30)];             schedule[scheduleIndex++] = ((secondSkbValue << 16) | (firstSkbValue & 0xFFFF)) & 0xFFFFFFFF;             firstSkbValue = ((firstSkbValue >> 16) | (secondSkbValue & 0xFFFF0000));             firstSkbValue = (firstSkbValue << 4) | (firstSkbValue >> 28);             schedule[scheduleIndex++] = firstSkbValue & 0xFFFFFFFF;          }          return schedule;       }       /// <summary>       /// This method does some bit manipulations.       /// </summary>       /// <param name="left">An input that is manipulated and then used for output.</param>       /// <param name="right">This is used for the bit manipulation.</param>       /// <param name="scheduleIndex">The index of an uint to use from the schedule array.</param>       /// <param name="firstSaltTranslator">The translated salt for the first salt character.</param>       /// <param name="secondSaltTranslator">The translated salt for the second salt character.</param>       /// <param name="schedule">The schedule arrray calculated before.</param>       /// <returns>The result of these manipulations.</returns>       private static uint DEncrypt(uint left, uint right, uint scheduleIndex, uint firstSaltTranslator, uint secondSaltTranslator, uint[] schedule)       {          uint firstInt, secondInt, thirdInt;          thirdInt = right ^ (right >> 16);          secondInt = thirdInt & firstSaltTranslator;          thirdInt = thirdInt & secondSaltTranslator;          secondInt = (secondInt ^ (secondInt << 16)) ^ right ^ schedule[scheduleIndex];          firstInt = (thirdInt ^ (thirdInt << 16)) ^ right ^ schedule[scheduleIndex+1];          firstInt = (firstInt >> 4) | (firstInt << 28);          left ^= (m_SPTranslationTable[1, firstInt & 0x3F] |                      m_SPTranslationTable[3, (firstInt >> 8) & 0x3F] |                      m_SPTranslationTable[5, (firstInt >> 16) & 0x3F] |                      m_SPTranslationTable[7, (firstInt >> 24) & 0x3F] |                      m_SPTranslationTable[0, secondInt & 0x3F] |                      m_SPTranslationTable[2, (secondInt >> 8) & 0x3F] |                      m_SPTranslationTable[4, (secondInt >> 16) & 0x3F] |                      m_SPTranslationTable[6, (secondInt >> 24) & 0x3F]);          return left;       }       /// <summary>       /// Calculates two uints that are used to encrypt the password.       /// </summary>       /// <param name="schedule">The schedule table calculated earlier.</param>       /// <param name="firstSaltTranslator">The first translated salt character.</param>       /// <param name="secondSaltTranslator">The second translated salt character.</param>       /// <returns>2 uints in an array.</returns>       private static uint[] Body(uint[] schedule, uint firstSaltTranslator, uint secondSaltTranslator)       {          uint left = 0;          uint right = 0;          uint tempInt;          for(int index = 0; index < 25; index++)          {             for(uint secondIndex = 0; secondIndex < m_desIterations * 2; secondIndex += 4)             {                left = DEncrypt(left, right, secondIndex, firstSaltTranslator, secondSaltTranslator, schedule);                right = DEncrypt(right, left, secondIndex + 2, firstSaltTranslator, secondSaltTranslator, schedule);             }                          tempInt = left;             left = right;             right = tempInt;          }          tempInt = right;          right = (left >> 1) | (left << 31);          left = (tempInt >> 1) | (tempInt << 31);          left &= 0xFFFFFFFF;          right &= 0xFFFFFFFF;          uint[] operationResults = new uint[2];          PermOperation(right, left, 1, 0x55555555, operationResults);          right = operationResults[0];          left = operationResults[1];          PermOperation(left, right, 8, 0x00FF00FF, operationResults);          left = operationResults[0];          right = operationResults[1];          PermOperation(right, left, 2, 0x33333333, operationResults);          right = operationResults[0];          left = operationResults[1];          PermOperation(left, right, 16, 0xFFFF, operationResults);          left = operationResults[0];          right = operationResults[1];          PermOperation(right, left, 4, 0x0F0F0F0F, operationResults);          right = operationResults[0];          left = operationResults[1];          uint[] singleOutputKey = new uint[2];          singleOutputKey[0] = left;          singleOutputKey[1] = right;          return singleOutputKey;       }       /// <summary>       /// Automatically generate the encryption salt (2 random printable characters for use in the encryption) and call the Crypt() method.       /// </summary>       /// <param name="textToEncrypt">The text that must be encrypted.</param>       /// <returns>The encrypted text.</returns>       public static string Crypt(string textToEncrypt)       {          Random randomGenerator = new Random();          int maxGeneratedNumber = m_encryptionSaltCharacters.Length;          int randomIndex;          StringBuilder encryptionSaltBuilder = new StringBuilder();          for(int index = 0; index < 2; index++)          {             randomIndex = randomGenerator.Next(maxGeneratedNumber);             encryptionSaltBuilder.Append(m_encryptionSaltCharacters[randomIndex]);          }          string encryptionSalt = encryptionSaltBuilder.ToString();          string encryptedString = Crypt(encryptionSalt, textToEncrypt);          return encryptedString;       }       /// <summary>       /// Encrypts the specified string using the Unix crypt algorithm.       /// </summary>       /// <param name="encryptionSalt">2 random printable characters that are used to randomize the encryption.</param>       /// <param name="textToEncrypt">The text that must be encrypted.</param>       /// <returns>The encrypted text.</returns>       public static string Crypt(string encryptionSalt, string textToEncrypt)       {          if(encryptionSalt==null) throw new ArgumentNullException("encryptionSalt");       if(textToEncrypt==null) throw new ArgumentNullException("textToEncrypt");                  bool isSaltTooSmall = (encryptionSalt.Length < 2);          if(isSaltTooSmall)          {             throw new ArgumentException("The encryptionSalt must be 2 characters big.");          }          char firstSaltCharacter = encryptionSalt[0];          char secondSaltCharacter = encryptionSalt[1];          // Make sure the string builder is big enough AND filled with 13 characters (the length of the encrypted password).          // We will use the index operator to set them, but when the characters are not present, even though the string builder          // has enough capacity, it will throw an exception.          StringBuilder encryptionBuffer = new StringBuilder("*************");          encryptionBuffer[0] = firstSaltCharacter;          encryptionBuffer[1] = secondSaltCharacter;          // Use the ASCII value of the salt characters to lookup a number in the salt translation table.          uint firstSaltTranslator = m_saltTranslation[Convert.ToUInt32(firstSaltCharacter)];          uint secondSaltTranslator = m_saltTranslation[Convert.ToUInt32(secondSaltCharacter)] << 4;          // Build the first encryption key table by taking the ASCII value of every character in the text to encrypt and          // multiplying it by two. Note how the cast will not lose any information. The highest possible ASCII character          // in a password is the tilde (~), which has ASCII value 126, so the highest possible value after the          // multiplication would be 252.          byte[] encryptionKey = new byte[8];          for(int index = 0; index < encryptionKey.Length && index < textToEncrypt.Length; index++)          {             int shiftedCharacter = Convert.ToInt32(textToEncrypt[index]);             encryptionKey[index] = (byte)(shiftedCharacter << 1);          }          uint[] schedule = SetDESKey(encryptionKey);          uint[] singleOutputKey = Body(schedule, firstSaltTranslator, secondSaltTranslator);          byte[] binaryBuffer = new byte[9];          IntToFourBytes(singleOutputKey[0], binaryBuffer, 0);          IntToFourBytes(singleOutputKey[1], binaryBuffer, 4);          binaryBuffer[8] = 0;          uint binaryBufferIndex = 0;          uint passwordCharacter;          uint bitChecker = 0x80;          bool isAnyBitSet, bitCheckerOverflow;          for(int index = 2; index < 13; index++)          {             passwordCharacter = 0;             for(int secondIndex = 0; secondIndex < 6; secondIndex++)             {                passwordCharacter <<= 1;                isAnyBitSet = ((binaryBuffer[binaryBufferIndex] & bitChecker) != 0);                if(isAnyBitSet)                {                   passwordCharacter |= 1;                }                bitChecker >>= 1;                bitCheckerOverflow = (bitChecker == 0);                if(bitCheckerOverflow)                {                   binaryBufferIndex++;                   bitChecker = 0x80;                }                // The original source had the line below, I moved it outside the compound signs, because it will overwrite the value                // a few times before incrementing the index. Where it is now it will be written only once.                // Just to be on the safe side, I keep the original line here, so I know where it originally was.                //encryptionBuffer[index] = Convert.ToChar(m_characterConversionTable[passwordCharacter]);             }             encryptionBuffer[index] = Convert.ToChar(m_characterConversionTable[passwordCharacter]);          }                    return encryptionBuffer.ToString();       }    }